ASYMMETRIC DIELS-ALDER REACTION DIRECTED TOWARD CHIRAL ANTHRACYCLINE INTERMEDIATES

Keiji Maruoka, Minoru Sakurai, Junya Fujiwara, and Hisashi Yamamoto* Department of Applied Chemistry, Nagoya University Chikusa, Nagoya 464, Japan

Abstract: The asymmetric Diels-Alder reaction of naphthoquinone derivative and diene in the presence of chiral boron reagent derived from $B(OMe)_3$ and $(\underline{R},\underline{R})$ -(+)-tartaric acid diamide has been described as a model for the enantioselective preparation of important tetracycline natural products.

A recent communication by Kelly et al.¹ has prompted the publication of our independent results on the similar reaction sequence:²

The synthesis of naturally occurring anthracyclines and related analogue structures has been the central subject of intense study since 1970.³ Among various strategies for these aglycone (anthracyclinone) synthesis, the asymmetric Diels-Alder approach using chiral metal catalyst appears to be one of the most desirable in view of the efficiency, selectivity, and synthetic flexibility.⁴ Accordingly, we have initiated to study an asymmetric Diels-Alder reaction of naphthoquinone derivative and diene in the presence of chiral Lewis acid as a model for the enantioselective preparation of important tetracycline natural products. The method depends on the combining use of boron reagents and tartaric acid derivatives recently reported in our laboratory⁵ and others.⁶

Reaction of juglone (1)⁷ with trimethyl borate and $(\underline{R},\underline{R})-(+)$ -diisopropyl tartrate (2) (X = COOPr¹) in CH₂Cl₂ gave rise to an intermediate 3 which was directly treated with 1-trimethylsiloxy-1,3-diene⁸ at room temperature for 54 h affording the chiral adduct 4 (R = Me; 74% yield: $[\alpha]^{24}_{D} -27^{\circ}$ (c 1.5, CHCl₃)) with rigorous regio- and stereochemistry. Because of its instability for oxygen, the adduct 4 was transformed to the more stable derivative 5 (R = Me; $[\alpha]^{21}_{D} -16.7^{\circ}$ (c 1.5, CHCl₃)) with NaBH₄ in THF.^{4a,9} The optical purity was substantiated by HPLC analysis to be 9% ee after converting to the (+)-MTPA

entr	y siloxy- diene ^b	diol, 2 (X)	time ^c (h)	chem. yield <u>d</u>	[α] _D	opt.yield <u>e</u>) (% ee)
				(%)	(c 1.5, CHCl ₃	
1	R = Me	Me	69	89	-1.5	
2		COOPr ⁱ	54	74	-27.0	9
3		COOCH ₂ Ph	48	95	-68.0	
4		CONMe ₂	50	95	+31.8	
5		CON(CH ₂) ₄	48	83	+6.9	
6		CONHMe	21	96	-292.6	81
7		CONHPr	23	90	-304.6	84
8			98 9	88	-250.4	
9		CONHCH ₂ Ph	24	96	-247.2	77
10		CONHPr ^I	23	95	-279.8	81
11		CONHCHEt ₂	7	78	-273.4	81
12		CONHCH(CH ₂) ₄	20	85	-268.8	80
13		CONHCH(CH ₂) ₅	16	84	-264.1	80
14		f	16	82 <u>i</u>	+266.2	80
15		CONHCH(CH ₂) ₁₁	22	84	-185.4	7
16		CONHBut	13	77	-295.4	82
17		CONHCEt ₃	10	73	-281.1	81
18		CONH(<u>m</u> -Tolyl)	3	78	-289.2	83
19			9 g	79	-295.2	84
20			70 <u>h</u>	78	-216.4	75
21	R = Et	CONHCHEt ₂	29	82	-260.1	83
22		CONH(<u>m</u> -Tolyl)	6	73	-280.7	87
23			12 ^g	73	-296.9	92
24	$R_3 = \underline{t} - BuMe_2$	CONH(<u>m</u> -Tolyl)	5	82	-284.4	79 <u>1</u>

Table I. Asymmetric Diels-Alder Reaction of Juglone and Dienesª

^a Reaction was carried out as described in note 11 to give the Diels-Alder product 4. ^b A mixture of cis and trans isomers (~4:6) was utilized. ^c Reaction time at room temperature, unless otherwise noted. ^d Isolated yield of 4. ^e Determined by HPLC analysis after converting to the (+)-MTPA ester 6. ^f Use of the enantiomer of 2 (X = CONHCH(CH₂)₅). ^g At 0°C. ^h At -20°C. ⁱ The enantiomer of 4 (R = Me) was obtained. ^j The optical yield was determined by the optical rotation value after converting 5 to the desilylated triol with HF.Py; $[\alpha]^{26}{}_{\rm D}$ -163.9° (c 0.5, CHCl₃). The optical rotation value of the triol derived from 5 (entry 21) follows: $[\alpha]^{24}{}_{\rm D}$ -171.7° (c 0.5, CHCl₃).

ester 6.¹⁰ With the boron-mediated asymmetric Diels-Alder process and the optical purity determination in hand, we next examined various optically active 1,2-diols possessing the C_2 -chirality as the chiral auxiliary, and the selected data are presented in Table I.¹¹ Apparently, ($\underline{R},\underline{R}$)-(+)-tartaric acid diamide of type 2 (X = CONHR') has proved to be quite effective (entries 6-20) compared with dialkyl tartrate (entries 2 and 3) and the diamide 2 (X = CONR'₂) (entries 4 and 5), and in the particular case of the arylamide 2 (X = CONH(<u>m</u>-Tolyl)) by combining use of 1-triethylsiloxy-1,3-butadiene the chiral adduct 4 (R = Et) was obtained in 92% ee (entry 23). Use of bulky t-butyldimethylsiloxydiene

exhibited somewhat low enantioselectivities (entry 24). The absolute configuration of the adduct 5 (R = Me: $[\alpha]^{24}_{D}$ -143.2° (c 1.5, CHCl₃))¹² was deduced from the optical rotation of the known compound 7¹³ as outlined below.

(a) Ac_2O/Py in CH_2Cl_2 ; (b) HF·Py in THF; (c) (S)-(+)- α -Methoxyphenylacetic acid/DCC/ cat. DMAP in CH_2Cl_2 ; (d) K_2CO_2 in MeOH; (e) cat. p-TsOH·H₂O/2-Methoxypropene in DMF.

More significant is the asymmetric Diels-Alder reaction with naphthazarin as the dienophile which is already shown to be a versatile starting material for anthracycline synthesis.¹⁴ Thus, reaction of naphthazarin monoacetate 8^{14g} with $(\underline{R},\underline{R})-(+)$ -tartaric acid diamide 2 (X = CONH(<u>m</u>-Toly1)) and B(OMe)₃ in CH₂Cl₂ followed by treatment with 1-triethylsiloxy-1,3-butadiene at 0°C for 11 h yielded the chiral adduct 9 (93% yield: $[\alpha]^{24}_{D}$ -217.2° (c 1.5, CHCl₃)), the optical purity of which was determined to be 88% ee by HPLC analysis in a similar manner as described in 4.

The high enantioselectivity observed for the auxiliary of type 2 (X = CONHR') should be ascribed to the novel intramolecular hydrogen bonding between amide-hydrogen and naphthoquinone carbonyl as depicted in 10, where the diene would approach preferentially from the upper side of the dienophile, giving the cycloadduct 4 in accord with the observed configuration. The rate enhancement by using the arylamide 2 (X = CONH(\underline{m} -Tolyl)) (entries 18 and 22) would be interpreted as forming the stronger hydrogen bonding in view of the electron-withdrawing aryl group.

References and Notes

- Kelly, T. R.; Whiting, A.; Chandrakumar, N. S. J. Am. Chem. Soc. 1986, 108, 3510.
- This work was presented by K. M. at the 3rd International Kyoto Conference on New Aspects of Organic Chemistry, Kyoto, November 1985.
- Reviews: (a) Arcamone, F. In "Topics in Antibiotic Chemistry"; Sammes, P. G. Ed.; Ellis Horwood: Chichester, England, 1978; Vol 2, p 99. (b) Kelly, T. R. <u>Ann. Rep. Med. Chem.</u> 1979, 14, 288. (c) Remers, W. A. "The Chemistry of Antitumor Antibiotics"; John-Wiley & Sons: New York, 1979; Vol 1, p 63. (d) Terashima, S. <u>J. Syn. Org. Chem., Jpn. 1982, 40</u>, 20.

4898

- 4. For the asymmetric Diels-Alder approach to anthracyclinone synthesis and their model studies, see: (a) Trost, B. M.; O'Krongly, D.; Belletire, J. L. J. Am. Chem. Soc. 1980, 102, 7595. (b) Gupta, R. C.; Harland, P. A.; Stoodley, R. J. J. Chem. Soc., Chem. Comm. 1983, 754. (c) Gupta, R. C.; Slawin, A. M. Z.; Stoodley, R. J.; Williams, D. J. <u>ibid.</u> 1986, 668.
- 5. (a) Ikeda, N.; Arai, I.; Yamamoto, H. <u>J. Am. Chem. Soc.</u> 1986, <u>108</u>, 483. (b) Ikeda, N.; Omori, K.; Yamamoto, H. <u>Tetrahedron Lett.</u> 1986, <u>27</u>, 1175.
- (a) Roush, W. R.; Walts, A. E.; Hoong, L. K. <u>J. Am. Chem. Soc.</u> 1985, <u>107</u>, 8186.
 (b) Roush, W. R.; Halterman, R. L. <u>ibid.</u> 1986, <u>108</u>, 294.
- 7. Recent studies on the Diels-Alder reactions of juglone with various dienes as models for tetracycline synthesis: (a) Trost, B. M.; Ippen, J.; Vladuchick, W. C. J. Am. Chem. Soc. 1977, <u>99</u>, 8116. (b) Boeckman, Jr. R. K.; Dolak, T. M.; Culos, K. O. <u>ibid.</u> 1978, <u>100</u>, 7098. (c) Kelly, T. R.; Montury, M. <u>Tetrahedron Lett.</u> 1978, 4309, 4311. (d) Boeckman, Jr. R. K.; Delton, M. H.; Dolak, T. M.; Watanabe, T.; Glick, M. D. J. Org. Chem. 1979, <u>44</u>, 4396. (e) Trost, B. M.; Vladuchick, W. C.; Bridges, A. J. J. Am. Chem. <u>Soc.</u> 1980, <u>102</u>, 3554. (f) Krohn, K. <u>Tetrahedron Lett.</u> 1980, <u>21</u>, 3557. (g) Gessen, J.-P.; Jacquesy, J.-C.; Mondon, M. <u>ibid.</u> 1980, <u>21</u>, 3351; 1981, <u>22</u>, 1337. (h) Cameron, D. W.; Feutrill, G. I.; Mckay, P. G. <u>ibid.</u> 1981, <u>22</u>, 701.
- 8. Cazeau, P.; Frainnet, E. <u>Bull. Soc. Chim.</u> Fr. 1972, 1958.
- 9. 5 (R = Me): 270-MHz ¹H NMR (CDCl₃) δ 7.96 (s, 1H), 7.35 (d, 1H, <u>J</u> = 7.6 Hz), 7.11 (t, 1H, <u>J</u> = 7.8 Hz), 6.96 (d, 1H, <u>J</u> = 8.1 Hz), 5.78 (m, 1H), 5.59 (m, 1H), 5.36 (m, 1H), 4.47 (s, 1H), 2.62-2.77 (m, 3H), 1.95 (d, 1H, <u>J</u> = 19 Hz), 1.42 (s, 1H), -0.25 (s, 9H); IR (CHCl₃) 3344, 1680, 1578, 1456, 1247, 1222, 1205, 1056, 838 cm⁻¹.
- 10. The (+)-MTPA ester 6 was prepared from 5 by (i) acetylation with Ac_2O and Py in CH_2Cl_2 , (ii) desilylation with Py·HF in THF, and (iii) esterification with (+)-MTPA-Cl and NEt₃ in CH_2Cl_2 in the presence of catalytic DMAP.
- 11. The experimental procedure for the asymmetric Diels-Alder reaction is given here (entry 7): To a solution of juglone (1) (52 mg, 0.3 mmol) and amide 2 (X = CONHPr) (84 mg, 0.36 mmol) in CH_2Cl_2 (40 mL) was added $B(OMe)_3$ (0.041 mL, 0.36 mmol) at room temperature. CH_2Cl_2 -MeOH azeotrope (20 mL) was distilled off at 60°C over 40-50 min to remove the <u>in situ</u> generated MeOH. The residual yellow solution was cooled to 0°C and treated with 1trimethylsilyloxy-1,3-butadiene (0.154 mL, 0.9 mmol). The mixture was stirred at room temperature for 23 h and worked up with aqueous NaHCO₃. Concentration of the CH_2Cl_2 extracts left the brown oil which was purified by column chromatography on silica gel (ether/hexane = 1:5) to give 4 (R = Me) (87 mg, 90% yield; $[\alpha]^{24}_{D}$ -304.6° (c 1.5, CHCl₃)).
- 12. Obtained by the reduction of **4** (R = Me) (entry 13) with NaBH₄ in THF at 0°C. 13. Authentic **7**: $[\alpha]^{23}_{D}$ -311° (c 0.013, CHCl₃). See ref 2a.
- 14. (a) Kelly, T. R.; Gillard, J. W.; Goerner, Jr., R. N. <u>Tetrahedron Lett.</u> 1976, 3873. (b) Kelly, T. R.; Gillard, J. W.; Goerner, Jr., R. N.; Lyding, J. M. J. <u>Am. Chem. Soc.</u> 1977, <u>99</u>, 5513. (c) Kelly, T. R. <u>Tetrahedron Lett.</u> 1978, 1387. (d) Krohn, K.; Rösner, A. <u>ibid.</u> 1978, 353. (e) Krohn, K.; Tolkiehn, K. <u>ibid.</u> 1978, 4023. (f) Krohn, K.; Ostermeyer, H-H.; Tolkiehn, K. <u>Chem. Ber.</u> 1979, <u>112</u>, 2640. (g) Krohn, K.; Tolkiehn, K. <u>ibid.</u> 1979, <u>112</u>, 3453; 1980, <u>113</u>, 2976. (h) Kelly, T. R.; Vaya, J.; Ananthasubramanian, L. J. <u>Am. Chem. Soc.</u> 1980, <u>102</u>, 5983. See also 7f,g.

(Received in Japan 19 July 1986)